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The authors propose a small-world network model that combines cellular automata with the social
mirror identities of daily-contact networks for purposes of performing epidemiological simulations.The
social mirror identity concept was established to integrate human long-distance movement and daily
visits to fixed locations. After showing that the model is capable of displaying such small-world effects
as low degree of separation and relatively high degree of clustering on a societal level, the authors
offer proof of its ability to display R0 properties—considered central to all epidemiological studies. To
test their model, they simulated the 2003 severe acute respiratory syndrome (SARS) outbreak.
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1. Introduction

Factors that influence the transmission dynamics of epi-
demics include individual diversity and social networks
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constructed by interpersonal relationships and simple daily
contact [1-6]. For instance, interactions among individu-
als and contact routes both affect the outbreak of short-
distance contagious diseases such as severe acute res-
piratory syndrome (SARS) and enteroviruses [3, 5-11].
Due to the potential complexity of human interactions,
researchers need a simulation model that can represent
multiple social networks to analyze and control a wide
range of potential transmission behaviors and epidemic
characteristics.
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Furthermore, epidemic transmission speed and scope
are closely related to daily human activities. Modern
lifestyles are marked by strong habits with little day-to-day
variety. For instance, the majority of adults in developed
countries use the same transportation modes for short- and
long-distance movement on a daily basis. The limited di-
versity of transportation options to sites that are visited
regularly (e.g., workplaces and schools) makes it easy for
the rapid transmission of diseases within a town or city.
Since it is hard to control the movement of individuals
(e.g., method, timing, direction, and distance), researchers
are repeatedly challenged by the task of simulating indi-
vidual movement within a society—an issue referred to in
the literature as the “mobile individual problem” [12-15].

Researchers who use small-world network models to
investigate epidemics usually divide human contacts into
short-distance (short-link) and long-distance (long-link)
contact categories [1-6, 16-19]. While these models offer
partial explanations for the mobile individual phenomenon,
they fail to accurately express concurrent epidemic move-
ment from one infectious agent to a group of susceptible
people—for instance, coworkers, classmates, hospital em-
ployees, or passengers taking the same bus. When apply-
ing small-world network models to epidemics, indirect de-
scriptions such as shortcuts and short/long or strong/weak
links may not accurately reflect the repeated use of trans-
portation tools for long-distance movement and for visiting
multiple sites in one day. For this reason, epidemiologists,
public health specialists, and health authorities cannot use
most of the abstract small-world network models that have
been proposed to test the efficacy of various public health
policies and epidemic prevention strategies.

In this article, we propose a social mirror identity con-
cept that accurately reflects human interaction (including
long-distance movement and daily visits to fixed and/or
multiple locations) in modern societies (Fig. 1). According
to the social mirror identity concept, every visited location,
every played role, and every performed activity is consid-
ered a social mirror identity of the individual in question.
A list of one’s social mirror identities might include fa-
ther, husband, coworker, supervisor, subordinate, fellow
passenger, store customer, or restaurant diner. Each role
or activity at each location is considered a separate mir-
ror identity. The mirror identity concept allows for a more
complete and direct imitation of social phenomena and
daily movement. In combination with cellular automata,
we offer it as a solution to the mobile individual problem.

2. Related Epidemiological Models and Concepts

2.1 Compartmental Models

Many epidemiologists have used compartmental models
to predict epidemic outbreak trends [20, 21]; the most ba-
sic and well known is the SIR model created by William
Kermack in 1927 (Fig. 2) [20]. During the 2002-2003
SARS outbreaks, many researchers used compartmental

models to estimate transmission dynamics and develop-
mental tendencies [22-26] and to analyze super-spreader
events (SSEs). However, those models were only capable
of calculating change in the total number of infected indi-
viduals per time step. During each simulation, differential
equations were applied to calculate pivotal parameters, in-
cluding the basic case reproduction number R0 [27, 28],
which is considered essential to the work of public health
specialists and epidemiologists. To generate more accurate
simulation results, some researchers divided each popula-
tion into subgroups according to age, location of residence,
infection rate, and other characteristics of interest to epi-
demiologists [22-23, 26]. Regardless of characteristic or
category, these simulation models ignore the fact that so-
cial phenomena emerge from regular and frequent human
interaction. In other words, compartmental models empha-
size epidemic characteristics (e.g., transmission, mortality,
and recovery rates) at the expense of population structure,
social space, heterogeneity, localization, and interaction.
Consequently, compartmental models are insufficient for
analyzing public policy issues and epidemic prevention
strategies.

The basic case reproduction number R0 is an index pa-
rameter with an important reference value—the number
of people infected by a patient prior to recovery or death.
When R0 is greater than 1, the number of infected patients
increases, and the transmission rate soars. An R0 of 1 in-
dicates stability in the spread of the infection—in other
words, each patient transmits the virus to one person on
average. When R0 is smaller than 1, a patient may or may
not transmit the virus, making the recovery rate higher than
the infection rate. Accordingly, 1 is considered a plague
threshold value; to prevent an epidemic from becoming a
plague, R0 must remain below the threshold value.

2.2 Simple Social Network Models

There are at least two ways of constructing a simple net-
work model:

1. Lower dimensional lattices that represent social
networks (Fig. 3a) [14, 29, 30]. Examples in-
clude one-dimensional ring-shaped lattices and two-
dimensional lattices with periodic boundary condi-
tions (i.e., a doughnut-shaped surface). Since each
node is connected to its adjacent nodes and the num-
ber of connected nodes never changes, these models
are sometimes referred to as regular network models.

2. Random networks that represent social networks
(Fig. 3b) [31]. This type of network model and the
compartmental model described above are equiva-
lent in that both use statistics to represent many so-
cial network characteristics. Random network mod-
els are considered primitive means of representing
complex, chaotic, and unpredictable societies.
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Figure 1. An example of the social mirror identity concept

Figure 2. General transfer diagram for the compartmental SIR model with susceptible population S, infected population I , and
recovered population R

Figure 3. Social network models: (a) regular, (b) random, and (c) small world

Volume 81, Number 10 SIMULATION 3
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In either model, communities, cities, and countries can
be defined as separate social networks; even our planet
can represent one social network. One node represents one
individual with status-determining attributes, for example,
epidemiological progress, gender, age, or immunization.
Connections between individuals are referred to as edges,
with different edges representing different interpersonal
relationships. Edges in AIDS simulations represent sexual
relationships, while in SARS simulations, they represent
close physical proximity. The states of all network nodes
change simultaneously during each time step. The state of
each individual node is determined by its original state, its
neighbor’s state, and a set of interaction rules.

Some researchers have used two-dimensional cellular
automata to explore local transmission mechanisms and
epidemic characteristics [30, 32-37]. Cellular automata are
considered specific and regular network models. They ex-
hibit social properties such as population structure, local
aggregation, social space, heterogeneity, and interaction—
all of which are essential to understanding epidemiological
and contagion issues (Fig. 4). They are useful for observing
disease transmission during an epidemic, but they lack an
important network property—small-world phenomenon—
meaning that they generally fail to represent low degrees
of separation among individuals [18]. Without this prop-
erty, a social network model cannot accurately simulate
real transmission dynamics or modern public health poli-
cies associated with epidemic diseases.

2.3 Small-World Social Network Models

2.3.1 Triadic Closure

First proposed by Rapoport [38] in 1957, the triadic closure
concept is based on the view of human beings as “birds
of a feather.” Accordingly, employees in the same com-
pany, classmates in the same school, and regular customers
at a coffee shop have a much better chance of meeting
each other and forming relationships than two strangers.
In other words, relationships are formed because of what
people have in common, not because of random probabil-
ities. The triadic closure concept posits that two strangers
with a common friend have a higher than average proba-
bility of meeting each other and becoming friends them-
selves. Triadic relationships are thus viewed as a funda-
mental structural unit, complete with social rules governing
connections among individuals. Connections established
via multiple triads form large social networks. Whenever
an epidemic outbreak occurs, healthy but susceptible lo-
cals are most likely to become infected due to their triadic
and/or polygonal closure relations with infectious patients.

2.3.2 Small-World Network Models

While working on his well-known letter delivery exper-
iment in 1967, Milgram [39] proposed a concept called
“six degrees of separation” to explain the phenomenon in
which humans frequently interact with each other and form

groups, yet everybody in the world remains separated by
only six other people. Milgram’s idea was verified in 1998
by Watts and Strogatz [16] (Fig. 3c). Their small-world
network model (which contains the characteristics of high
clustering and low degree of separation) was based on two
concepts: (1) topological networks and structures are ubiq-
uitous in the real world, and (2) they strongly influence so-
cial issue dynamics and outcomes [5, 17-19, 40]. Because
of their work, the capability of any social simulation model
to portray high clustering and low degree of separation
is now considered an important index for examining so-
cial network models. Social individuals are characterized
by long-distance movement, daily visits to fixed locations,
multiple activity locations, and local clustering—meaning
that the average distance between any two individuals is
shortened. Geographic location and distance are therefore
considered secondary causal factors in epidemic outbreaks.

2.3.3 The Small-World Phenomenon

Determining whether a social network model is indeed a
small-world network model requires validation of a high
clustering coefficient and a low degree of separation co-
efficient. A clustering coefficient is used to evaluate the
degree of connection between two neighboring nodes. In
equation (1), graph G represents a social network, vi is
a node in graph G, and ki is the vertex degree of node vi .
The C(vi) clustering coefficient of node vi is defined as the
ratio of Ei (the number of edges that actually exist among
the ki nodes) and ki× (ki – 1)/2. Accordingly, the C(G)
clustering coefficient of the entire social network equals
the average C(vi) value for all nodes.

C(vi) = 2× Ei

ki × (ki − 1)
. (1)

The S(vi , vj ) separation coefficient is used to evaluate the
shortest distance between two random nodes, vi and vj . The
S(G) separation coefficient of the entire social network is
the average length of the shortest distances between any
two nodes. When the number of individuals in a society
increases, the average separation coefficient between any
two individuals increases logarithmically rather than pro-
portionally [17].

3. The Proposed Model

As shown in Figure 5, our simulation model consists of
two layers. The upper layer is a simplified multiagent sys-
tem for simulating heterogeneous cohorts, and the lower
layer contains two-dimensional n×n cellular automata that
represent real-world activity spaces. Social mirror identi-
ties are used to connect the two layers, thus establishing
a small-world network model. By manipulating transmis-
sion rules, disease parameters, and public health policies,
the model can be used to simulate the transmission dy-
namics of contagious diseases, verbal communication, and
social issues.

4 SIMULATION Volume 81, Number 10
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Figure 4. Cellular automata and state transition function

Figure 5. Cellular automata with the social mirror identity model (CASMIM)

3.1 Cellular Automata with Social Mirror Identities
Model (CASMIM)

In the cellular automata with social mirror identities model
(CASMIM), each individual is depicted as a single agent in
the upper-layer multiagent system, and the places that an
agent visits on a regular basis (e.g., homes, train stations,
workplaces, and restaurants) are defined as that individ-
ual’s social mirror identities. In typical cellular automata,
lattices represent abstract agents. In our model, each lower-

layer cellular automata lattice represents a social mirror
identity.

It is possible for multiple social mirror identities to be
connected to the same agent. Each agent has many so-
cial mirror identities representing fixed locations that are
visited daily or very frequently. The number of social mir-
ror identities connected to any single agent exhibits a nor-
mal distribution. Small clusters formed by a mirror identity
and its neighbors can represent family members, cowork-
ers, fellow commuters, health care workers, relatives in

Volume 81, Number 10 SIMULATION 5
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hospitals, or diners in restaurants. The mirror identity con-
cept uses simple social networks to preserve the properties
of elements that interact with their neighbors within two-
dimensional lattices and to reflect such activities as long-
distance movement and daily visits to fixed locations.

In the example shown in Figure 1, Andy spends 1 hour
every morning taking his wife Cindy to her job at a flower
shop before driving to his insurance company office. Their
son Bob takes a school bus to his elementary school. At
least once a week, the three of them eat dinner at their
favorite restaurant. After dinner, Andy often takes Cindy
and Bob home before going with his friends Dick, Eric, and
Frank to watch a baseball game.According to our proposed
model, Andy, Bob, Cindy, Dick, Eric, and Frank are upper-
layer agents, andAndy’s home and office and the restaurant
and stadium are lower-layer mirror identities. Bob’s mir-
ror identities are his home, school bus, classroom, and the
restaurant. Cindy has only three mirror identities: home,
the flower shop, and the restaurant. Andy’s automobile is
considered an extension of their home node rather than a
separate activity node since Andy rarely uses it to transport
anyone outside of his family. Bob’s school bus is consid-
ered a social mirror identity because he uses it 5 days per
week and plays with many of the children who take the
same bus.

Each individual upper-layer agent has a set of attributes
that demonstrate its epidemiological progress and social
mobility status (Table 1, Fig. 6); all of the agent’s social
mirror identities have access to these attributes. In addition,
each social mirror identity has a group of private attributes
that represent its current status, location, and special activ-
ity locations—homes, hospitals, or dormitories (Table 2).
Agents who possess individual social mirror identities have
complete access to these attributes. In the Figure 1 exam-
ple, Andy belongs to one group at home with Cindy and
Bob, a second group at his office with his coworkers, a third
group (also with Cindy and Bob) with other customers at
their favorite restaurant, and a fourth group with his base-
ball friends. Andy’s social mirror identities form a star-
shaped topology, with Andy at the center and the mirror
identities at the vertices.

According to our proposed model, the greater the num-
ber of social mirror identities an agent has, the greater the
agent’s influence. In epidemiological terms, the more so-
cial mirror identities an agent has, the more likely the agent
will become infected or transmit a disease to other agents.
In cellular automata terms, the lattices surrounding a so-
cial mirror identity represent neighbors, family members,
classmates, colleagues, friends, hospital workers, passen-
gers on the same bus, customers in the same restaurant,
and so on. Andy’s lower-layer social mirror identity at the
baseball stadium is adjacent to those of Dick, Eric, and
Frank, and his lower-level social mirror identity at home
is adjacent to those of Cindy and Bob.

Figure 6. Epidemiological and social mobility states

We decided to use the Moore neighborhood concept
with a radius parameter of 1 (Fig. 7) in CASMIM because
von Neumann neighborhoods lack triadic closure relation-
ships between a lattice and its four neighboring lattices. In
contrast, each lattice in a Moore neighborhood has triadic
closure relationships with its eight neighboring lattices;
this higher degree of local clustering matches Rapoport’s
description of interactions in human societies. In the Figure
1 example, if Andy catches the flu from his friend Dick, he
may infect his wife and son. According to triadic closure
relationships, there is a high probability that Bob, Eric, and
Frank will also become infected.

With a few important exceptions (e.g., AIDS), most
epidemic simulation models assume that one time step is
equivalent to one 24-hour period in the real world. We
used that assumption when designing CASMIM.As shown
in Figure 8, the statuses of upper-layer agents change si-
multaneously with their lower-layer social mirror identity
statuses during each time step. Each agent’s social mir-
ror identity comes into contact with all of its surrounding
neighbors’social mirror identities in random order per time
step; contact order is not considered critical. The attributes
of the social mirror identity, the agent, and other associated
social mirror identities vary according to the attributes of
the social mirror identities of neighboring agents, a set of

6 SIMULATION Volume 81, Number 10
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Table 1. Agent attributes

Data Default
Attribute Type Description Value

ID Integer Unique serial number that identifies agent in CASMIM. 1∼ P

E Symbol RateForeverImmune determines proportion of agents classified as M (Immune)
in the epidemiological progress attribute E (i.e., the population of permanently
immune agents). All other agents are classified as S (Susceptible)—“not yet
infected but prone to infection.”

Susceptible,
Immune

Mobility Symbol Default value is “free”—no restrictions on interacting with the mirror identities of
neighboring agents. When an agent is placed under home quarantine or hos-
pital isolation, its Mobility status changes to Quarantined or Isolated, meaning
that the agent is restricted to its rooted social mirror identity (home, hospital,
or dormitory) and that the activities of all social mirror identities are temporarily
suspended.

Free

Count Integer Records the number of an agent’s mirror identities; each agent has a minimum
of 1 and a maximum of M. The number of an agent’s mirror identities exhibits
a normal distribution.

1∼ M

MirrorIdentity Set Data structure for containing mirror identities.

Age Symbol Agents are categorized as young (1 to 20), prime (21 to 60), and old (61 and
above). Ages are randomly assigned according to RateYoung , RatePrime, and
RateOld parameters.

Young, Prime,
Old

Super Boolean Denotes whether an agent is a super-spreader. If yes, set Super to “true”; if
no, to “false.” The RateSuper parameter determines which agents are super-
spreaders.

True, False

Immunity
Permanent

Boolean Denotes whether an agent is permanently immune. If yes, set ImmunityPer-
manenty to “true”; if no, to “false.” The RateForeverImmunity determines which
agents are permanently immune.

True, False

Day Integer Number of days for each of the three epidemiological progress states. If an
infected agent has not yet recovered, Day is used to indicate the number of
infected days. For recovered agents, Day is used to indicate the number of
days since full recovery. If a recovered agent has temporary antibodies, Day is
used to indicate the number of immune days.

RateContact Real Rate of contact with other agents. For all agents, RateContact values exhibit a
normal distribution.

0∼1

WearingMask Boolean Denotes whether an agent wears a mask. If yes, set WearingMask to
“true”; if no, to “false.” Default value is “false.” When a mask-wearing pol-
icy is enacted (for the general public or for health care workers), the Pol-
icyWearingMask .Parameter.RateParticipation parameter is used to determine
how many agents wear masks.

False

MaskType Real Average prevention grade of agent masks.The higher the number (closer to 1),
the greater the efficacy.

0∼1

QuarantinedDay Integer Number of home quarantine days, with a range of 0 to
PolicyHomeQuarantine.Parameter.DayQuarantined .

Figure 7. Examples of von Neumann and Moore neighborhoods

Volume 81, Number 10 SIMULATION 7
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Table 2. Social mirror identity attributes

Data Default
Attribute Type Description Value

Root Boolean Each agent has one mirror identity whose Root = true; for all other mirror
identities, Root = false. The rooted mirror identity is used to mimic special
activity locations—for instance, homes, hospitals, and dormitories.

True, False

Suspend Boolean Default value is false for all mirror identities, denoting that they can move about
without restriction. Except for rooted mirror identities, Suspend = true for all
mirror identities of an agent in home quarantine or hospital isolation, repre-
senting the idea that the agent cannot interact with other adjacent neighbors
outside of its home or hospital until the end of the quarantine or recovery pe-
riod. If the agent dies, Suspend = true for all mirror identities (including rooted
mirror identity), representing the idea that the agent can no longer visit any
other location.

False

Location (Integer,
Integer)

The first number represents the x-axis coordinate and the second the y-axis
coordinate for the location of a mirror identity in the two-dimensional cellular
automata. Each mirror identity is mapped to a single coordinate location; in
other words, each coordinate location contains a single mirror identity of only
one agent.

Neighbor Set Represents the coordinate locations of mirror identities of neighboring agents.
We adopted the Moore neighborhood definition for our simulation model. Under
this neighborhood structure, each mirror identity is defined as having eight
neighbors.

interaction rules (to be described in section 4), simulation
and epidemic disease parameters (Table 3), public health
policy parameters (Table 4), and probabilistic causes (e.g.,
symptom detection rate).

At this point, our simulation model is considered a
small-world social network model with such simple social
network attributes as population structure, area clustering,
space, heterogeneity, localization, and interaction. It also
has the social attributes of long-distance movement, daily
visits to fixed locations, multiple activity nodes, and the
small-world characteristic of low degree of separation—all
of which are suitable for simulating epidemics, communi-
cation networks, and other contagion problems. Moreover,
one advantage of CASMIM is its use of the social mirror
identity concept to reflect individual geographic mobility
in special areas; this characteristic is particularly useful for
analyzing public health policies.

3.2 Implementing CASMIM

Our simulation system (created with C++) consists of many
functional modules, including CASMIM, an epidemiology
module, a social mobility module (e.g., families, dormito-
ries, and hospitals), and a public health policy module. We
created a general-purpose and extendable software plat-
form that is suitable for detailed numerical experimenta-
tion and classroom demonstrations of specific epidemic
diseases and public health policy suites. The computational
flowchart and system architecture for our proposed simula-
tion system are shown in Figures 8, 9, and 10, respectively.

To accommodate different requirements, we applied
the visual component library (VCL) and event-driven pro-

gramming model that is part of the Borland C++ Builder
to design the user interface and various input/output func-
tions of the simulation system (Fig. 11). In addition to
providing many specific statistical reports and charts on
epidemic data, the simulation system offers two browser
windows (micro-view and macro-view) to observe real-
time epidemic disease infection situations in an agent so-
ciety. After complied using the Borland C++ compiler and
conversion into an executable application, the simulation
system can be run on Windows with Dynamic Linked
Library (DLL) files. Our simulation system is available
at ftp://anonymous@140.126.75.253; for source code on
particular contagious diseases or specific research require-
ments, please contact the authors.

As shown in Figure 12a, the CASMIM construction pro-
cess consisted of four steps, with each step using its respec-
tive subprocedure to initialize the data structures and to
establish relations among these data objects. The four steps
were as follows: (1) call the initialize-multiagent-system
subprocedure to initialize the upper-layer multiagent sys-
tem, as shown in Figure 12b; (2) call the initialize-cellular-
automata subprocedure to initialize the lower-layer cellular
automata, as shown in Figure 12d; (3) call the distribute-
mirror-identities-to-CA subprocedure to distribute all of
an agent’s social mirror identities to cellular automata
lattices so that the upper-layer multiagent system and
lower-layer cellular automata connect with each other, thus
establishing one-to-one mapping; and (4) call the set-
rooted-mirror-identities-of-all-agents subprocedure to de-
fine all of an agent’s rooted mirror identities (subproce-
dure applications are discussed in section 4.2). For default

8 SIMULATION Volume 81, Number 10
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Figure 8. Simulation flowchart

values and related explanations of agent and social mirror
identity attributes, see Tables 1 and 2; for system param-
eters used by agents, social mirror identities, and cellular
automata during the initialization process, see Table 3.

The initialize-multiagent-system subprocedure repeats
four additional steps until all agents are initialized, at which
time it returns to the create-CASMIM procedure. The four
steps are as follows: (1) selecting an un-initialized agent
from the agent population, (2) giving the agent an ID,
(3) initializing the agent’s attributes, and (4) calling the
initialize-agent-mirror-identities subprocedure to initialize
the data structure used by the agent to contain its social
mirror identities (Fig. 12c).

The initialize-cellular-automata and initialize-
multiagent-system execution processes are very similar.

According to the row-major layout, the attributes of each
cellular automata lattice are initialized from top to bottom
row and from left to right column. The initialize-agent-
mirror-identities process is even more basic; it repeatedly
executes two steps for every social mirror identity of an
agent: it gives the identity a serial number and initializes
its attributes (Table 2). Accessing the private attributes of
a social mirror identity requires its serial number and the
ID of the agent who possesses the identity.

In CASMIM, since each cellular automata lattice is con-
nected to an agent’s social mirror identity, a procedure
for lattices and social mirror identities to form one-to-one
maps is required in order to provide access to each other’s
private attributes. A coordinate attribute designated Loca-
tion (x, y) is used by an agent’s social mirror identity to

Volume 81, Number 10 SIMULATION 9
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Figure 9. System flowchart

Figure 10. Simulation framework. Data on reported cases were collected from the World Health Organization (WHO) and national
health authorities. Input data were categorized as epidemic parameter (e.g., average incubation period, infection rate, distribution
among age groups, mortality), imported case (e.g., time point, amount, imported during incubation or illness period), and activated
public health policy (e.g., number of quarantine days, efforts to take body temperatures, restricting access to hospitals). Simulation
output includes cellular automata states and various statistical charts.

10 SIMULATION Volume 81, Number 10
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Table 3. Simulation system and epidemic disease parameters

Data Default
Attribute Type Description Value

PopulationAgent Set Stores total agent population in simulation system.
P Integer Total number of agents. 100,000
M Integer Upper limit of an agent’s mirror identities. 5
H Integer Height of two-dimensional lattice used in cellular automata. 500
W Integer Width of two-dimensional lattice used in cellular automata. 500
N Integer Total number of usable lattices (H ×W ) in cellular automata. 250,000

Period Incubation Integer Average number of incubation days. 5
Period Inf ectious Integer Average number of infectious days. 25
PeriodRecovered Integer Average number of recovered days. 7
Period Immune Integer Temporarily immune to the disease.

RateSuper Real Percentage of super-spreaders in total population. 0.0001
RateYoung Real Percentage of young (0 to 20 years) agents in total population. 0.3
RatePrime Real Percentage of prime (21 to 60 years) agents in total population. 0.5
RateOld Real Percentage of old (60 years and above) agents in total population. 0.2

RateForeverImmunity Real Percentage of permanently immune agents in total population.
RateInf ection Real Average infection rate. 0.045

RateDeath Real Average death rate. 0.204
FrequencyContact Real Number of contacts between an agent and its neighbors per time step. 4

Table 4. Public health policy parameters

Data
Policy Attribute Type Description

WearingMaskInGP
RateParticipation Real Policy participation rate.
RatePrevention Real Infectious disease prevention rate.

WearningMaskInHW
RateParticipation Real Policy participation rate.
RatePrevention Real Infectious disease prevention rate.

TemperatureMeasuring
RateDetection Real Fever detection success rate.

RateParticipation Real Measurement participation rate.

HomeQuarantine

Class Symbol A- and B-class quarantines.
DayQuarantined Integer Number of home quarantine days.

RateParticipation Real Policy participation rate.

RestrictedAccessToHospitals RateParticipation Real Policy participation rate.

ReducedPublicContact RateParticipation Real Policy participation rate.

record its position in the cellular automata. Two private
attributes (MirrorIdentityNo and AgentID) are used by the
cellular automata lattice to refer to the social mirror iden-
tity and the agent who possesses it. Moreover, the private
attributes Root and Suspend (Table 2) are used to model
specific epidemic situations such as home quarantine, hos-
pital isolation, the infectious condition of one’s family and
neighborhood during a home quarantine, or the infectious
condition of health care workers in a hospital where an
agent is being held in isolation.

After initializing the upper-layer agent population
and lower-layer cellular automata, the distribute-mirror-
identities-to-CA subprocedure is called to establish one-
to-one mapping between an agent’s social mirror identity
and the cellular automata lattice. Through this procedure,

a small-world network model is created for simulations.
The pseudo-code for the distribute-mirror-identities-to-CA
subprocedure is

procedure distribute-mirror-
identities-to-CA is

for index i from 1 to
System.Parameter.Pdo loop

AgentIndex(i).AttributeLimit ←
random-by-normal-distribution
(1, System.Parameter.M)

for index y from 1 to
System.Parameter.Hdo loop

for index x from 1 to
System.Parameter.W do loop

Volume 81, Number 10 SIMULATION 11
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Figure 11. Simulation system for contagious infections

Allocate:
ID← random(1, System.
Parameter.P) // ID ∈ [1, System.
Parameter.P]
if AgentIndex(ID).AttributeCount ≥
AgentIndex(ID).AttributeLimit then
goto Allocate:
No ← AgentIndex(r).AttributeCount ←
AgentIndex(r).AttributeCount + 1
call connect-mirror-identity-with-
cell(ID, No, x, y)

return

procedure connect-mirror-identity-
with-cell (parameter ID, No, x, y) is

AgentIndex(ID).MirrorIdentity Index(No).
AttributeLocation ← coordinates(x, y)

EnvironmentCA.Cellx,y.AttributeAgentID

← ID
EnvironmentCA.Cellx,y.
AttributeMirrorIdentityNo ← No

return

This subprocedure consists of two parts. In the first, a
random number between 1 and System.Parameter.M (Ta-
ble 3) is generated for each agent, and the number is as-
signed as the upper limit of possible social mirror identities
for an agent. The number of identities should exhibit a nor-
mal distribution. In the second part, two methods are used
to connect the cellular automata lattices with the agents’

social mirror identities. In the first method, each lattice is
assigned a randomly chosen agent from top to bottom row
and from left to right column, then each agent is connected
to an available lattice with a social mirror identity that
has yet to form its own lattice connection. If the number
of connections between an agent’s social mirror identities
and lattices has already reached its upper limit, the agent is
released and another agent randomly chosen for the same
procedure. In the second method, each agent’s social mirror
identity is assigned to a randomly chosen cellular automata
lattice. Determining which method to apply depends on a
combination of simplicity and the particular requirements
of the epidemic disease being examined.

The polymorphous Index(n) function used in the
distribute-mirror-identities-to-CA subprocedure has two
calling situations: AgentIndex(n), where Index(n) refers to
a certain agent with an ID of n, and AgentA.Mirror-
IdentityIndex(n), where Index(n) refers to a specific so-
cial mirror identity of agent A with an serial num-
ber of n. Index(n) has an inverse function desig-
nated Trace(S), which also has two calling situations:
AgentT race(S) (which returns the ID of a certain agent S)
and AgentA.MirrorIdentityT race(S) (which returns the serial
number of a specific social mirror identity S of agent A).
According to these definitions, it is possible to deduce
AgentA = Index(Trace(AgentA)). For examples of function
Trace(S), see section 4.1.

After a social mirror identity and lattice are chosen,
the distribute-mirror-identities-to-CA subprocedure calls

12 SIMULATION Volume 81, Number 10
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Figure 12. Flowchart for initializing the cellular automata with the social mirror identity model (CASMIM): (a) create-CASMIM
procedure, (b) initialize- multiagent-system subprocedure, (c) initialize-agent-mirror-identities subprocedure, and (d) initialize-
cellular-automata subprocedure.

the connect-mirror-identity-with-cell subprocedure to per-
form a two-way reference. At this point, the serial number
of the social mirror identity and the ID of the agent that
possesses the identity are respectively recorded as the Mir-
rorIdentityNo and AgentID of the cellular automata lattice.
The lattice position is recorded in Location (x, y)—the
coordinate attribute of the social mirror identity.

3.3 Small-World and Clustering Phenomena
in CASMIM

We designed two sensitivity analysis experiments to de-
termine whether our proposed model is (a) a small-world
social network with the characteristics of high clustering
and low degree of separation and (b) a robust simulation
model in which small-world characteristics are not affected
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as long as four parameters (cellular automata height, cel-
lular automata width, total agent population, and the upper
limit of an agent’s mirror identities) are set within reason-
able ranges. The first two parameters directly affect the set-
tings of the third and fourth, and vice versa. Corresponding
relationships among the four factors are shown in equation
(2); the distribute-mirror-identities-to-CA procedure is de-
scribed in section 3.2.

EnvironmentCA.AttributeH × EnvironmentCA.AttributeW

=
∑

A∈PopulationAgent

|AgentA.AttributeCount|. (2)

Our first experiment focused on the relationship be-
tween total agent population and degree of separation. We
maintained a fixed average number of agent mirror identi-
ties while changing the total agent population, beginning
with 2000 and adding 2000 for each simulation up to a
total of 200,000. Results are presented in Figure 13; the
horizontal axis represents total agent population, and the
vertical axis represents average degree of separation for
the entire social network. The curves represent four exper-
iments, with the average number of agent mirror identities
set at 2, 4, 6, and 8. Each curve shows the average value
for 20 runs.

According to our results, an increase in total agent pop-
ulation was accompanied by a slow, logarithmic increase in
average degree of separation for the entire social network.
The average degree of separation remained sufficiently low
to characterize our proposed model as a small-world social
network model. In other words, the simulation model will
always represent a small-world social network as long as
all agents have an average of two or more mirror identi-
ties, regardless of total agent population change. The lack
of fluctuation in our model’s small-world characteristic is
an indication of robustness for that parameter, even when
the total agent population value changes.

Our second experiment focused on the relationship be-
tween average number of agent mirror identities and degree
of separation. We maintained a fixed population of 10,000
agents and manipulated the number of agent mirror iden-
tities at a rate of 2n, with n = 0, 1, 2, 3, or 4. In Figure
14, the horizontal axis represents the average number of
agent mirror identities, and the vertical axis represents the
average degree of separation for the entire social network.
The results indicate that when the average number of mir-
ror identities = 1 (i.e., each upper-layer agent has only one
mirror identity in the lower-layer cellular automata, which
is considered typical of cellular automata), the average de-
gree of separation for the entire social network was very
high. When the average number of agent mirror identities
increased to 2 or more (with n ≥ 1), the average degree of
separation value decreased to 5.44, indicating the appear-
ance of small-world characteristics.As the average number

of agent mirror identities increased to 4 (with n = 2), the
curve in Figure 14 slowly decreased and stabilized. In other
words, our proposed simulation model resembles a small-
world social network as long as the average number of
agent mirror identities exceeds 1. Our results indicate that
the average number of agent mirror identities is a robust
parameter; as long as it remains within a reasonable range
(n ≥ 1), small-world characteristics are not influenced by
a change in value.

Figure 15 shows a normalized clustering coefficient
curve and the separation coefficient curve (outcome) after
normalizing the results of our second experiment. The clus-
tering coefficient C(Agent) can be derived from equation
(1), reduced according to the Moore neighborhood param-
eters and the number of an agent’s social mirror identities,
and expressed as equation (3) (where AgentA.AttributeCount

represents the number of social mirror identities of agent
A). The clustering coefficient C(PopulationAgent ) of the en-
tire social network is the average of C(Agent) for all agents.

C(Agent) =
3

8 surrounding Moore neighbors× Agent.AttributeCount)−1
.

(3)

In Figure 15, the horizontal axis represents the aver-
age number of agent mirror identities (increasing by 2n,
with n = 1, 2, 3, and 4), and the vertical axis range of 0
to 1 indicates a normalized unit. The normalized cluster-
ing curve consists of small squares, and the average degree
of separation curve consists of small triangles. The fig-
ure also indicates that when the average number of agent
mirror identities = 1, the degrees of separation and cluster-
ing are both 1. When the average number of agent mirror
identities exceeds 1 and increases gradually, (a) the de-
gree of separation curve rapidly falls to between 0.1 and
0.01, and (b) the clustering curve decreases gradually and
maintains a certain distance from the degree of separation
curve. However, both curves support the assertion that our
proposed model has the small-world social network char-
acteristics of a high degree of clustering and a low degree of
separation.

4. Modeling Contagious Epidemics and Setting
Parameters

4.1 Modeling Epidemiological Features

When applying our proposed model to examine epidemic
transmission dynamics, public health policies, and disease
prevention strategies, epidemiologists need to categorize
disease statuses according to specific epidemic character-
istics, local conditions, and administrative requirements.
We applied the state transfer concept of compartmental
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Figure 13. Effect of total agent population on average degree of separation

Figure 14. Effect of average number of agent mirror identities on average degree of separation

models and six disease statuses—S (Susceptible), E (In-
cubated), I (Infectious), D (Deceased), R (Recovered),
and M (Immune)—to represent an individual’s epidemi-
ological progress state (Fig. 6, Table 1) and the behav-
ioral and transformative results from interactions among
individuals.

Before modeling the epidemiological features and pub-
lic health policies, we assumed that the epidemic was trans-
mitted via close contact and exchanges of saliva.According
to the transmission route and social network characteristics

used in our simulation, infections were further divided into
contact and transmission stages, meaning that an agent’s
mirror identity had to come into contact with the mirror
identity of an adjacent neighbor for an infection to occur.

Based on the combination of Agent.Attribute.RateContact

and a random number c, each mirror identity of an agent
determines whether it will interact individually with the
mirror identities of its eight adjacent neighbors. If the
value of the Suspend attribute for the mirror identity of
agent A is false and the random number c is lower than
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Pr
oo

f C
op

y

Huang, Sun, Hsieh, Chen, and Lin

Figure 15. Effect of average number of agent mirror identities on average degree of separation and average clustering coefficient

the contact rate, the mirror identity of agent A comes into
contact with the mirror identity of its neighbor agent B.
The Agent.Attribute.RateContact depends on the enactment
of a specific parameter—for instance, “reduced public con-
tact.” In this section, we express these concepts using the
following pseudo-code:

procedure contact is
for each A ∈ PopulationAgent do loop
for each I ∈ AgentA.SetMirrorIdentity

do loop
if AgentA.MirrorIdentity I.
AttributeSuspend = False then
for each J ∈ AgentA.Mirror-
Identity I.SetNeighbor do loop

c← random(0, 1) // c ∈ [0,1]
if c ≤ AgentA.Attribute.RateContact

then
infect(AgentA.MirrorIdentity I,
AgentT race(J ).MirrorIdentity J )

return

procedure infect (parameter
AgentA.MirrorIdentity I,
AgentB.MirrorIdentity J ) is

if AgentA.AttributeE = I∧
AgentB.AttributeE = S then

n← Random(0, 1) // n ∈ [0,1]
if n ≤ System.Parameter.RateInf ection

then
comment epidemiological state
changes from S to E

AgentB.AttributeE ← E // E

means incubated
AgentB.AttributeDay ← 1

return

Assume that agents A and B have adjacent mirror iden-
tities; agent A is infected and contagious, and agent B is
susceptible and prone to infection. When the two agents
come into contact, a combination of infection rate (Sys-
tem.Parameter.RateInf ection) and a random number n de-
termines whether or not agent B is infected by agent
A. If n < the infection rate, agent B’s epidemiological
state changes to E (Incubated), and the period attribute
(Agent.AttributeDay) changes to 1 (denoting that symptoms
have not yet appeared and that agent B cannot transmit the
disease). The System.Parameter.RateInf ection is determined
by such factors as immunity rate—that is, whether agent
A is a super-spreader, in home quarantine, in hospital iso-
lation, and so on. Furthermore, agent A’s epidemiological
state automatically changes from E to I (Infectious) once
the incubation period (System.Parameter.PeriodIncubation)

is exceeded.

procedure handle-epidemiological-
progress-state (parameter AgentA) is
......
comment epidemiological state changes
from E to I

if AgentA.AttributeE = E then
if AgentA.AttributeDay > System.
Parameter.PeriodIncubation then
AgentA.AttributeE ← I // I means
Infectious
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......
comment epidemiological state changes
from I to R or D
if AgentA.AttributeE = I then

if AgentA.AttributeDay >

System.Parameter.Period (Incubation+Inf ectious)

then
d ← random(0, 1) // d ∈ [0,1]
if d ≤ System.Parameter.RateDeath

then
AgentA.AttributeE ← D // D means
Deceased
AgentA.AttributeDay ← 0
else
AgentA.AttributeE ← R // R means
Recovered
AgentA.AttributeDay ← 1

......
comment epidemiological state changes
from R to M

if AgentA.AttributeE = R then
if AgentA.AttributeDay >

System.Parameter.PeriodRecovered then
AgentA.AttributeE ← M // M means
Immune

......
comment epidemiological state changes
from M to S

if AgentA.AttributeE = M∧ not
AgentA.AttributeImmunityP ermanent then

if AgentA.AttributeDay >

System.Parameter.PeriodImmune then
AgentA.AttributeE ← S // S means
Susceptible
AgentA.AttributeDay ← 0

......
return

When agentA’s epidemiological state is I and it exceeds
the System.Parameter.PeriodInf ectious infectious period, a
combination of death rate (System.Parameter.RateDeath)
and a random number d determines whether the agent en-
ters the D (Deceased) or R (Recovered) state. Death rates
are influenced by such factors as age, whether or not the
agent was placed under home quarantine during its incuba-
tion and infective periods, whether it received treatment in
hospital isolation, and its public activities during the illness
period.

When agentA’s epidemiological state isR and it exceeds
the System.Parameter.PeriodRecovered recovery period, it au-
tomatically enters an M (Immune) state. In this state,
the Agent.AttributeImmunityP ermanent parameter determines
whether agent A’s immunity is permanent or temporary—
that is, whether complete recovery or renewed susceptibil-
ity occurs following System.Parameter.PeriodImmune.

4.2 Modeling Social Mobility, Families, and Hospitals

Mirror identities have two private attributes: Root and Sus-
pend (Table 2). As shown in the following pseudo-codes
(for the set-rooted-mirror-identities-of-all-agents proce-
dure), the Root attribute for most agents is true for one
mirror identity but false for all others. In contrast, the Sus-
pend attribute is false for all of an agent’s mirror identities.
To facilitate our discussion, we will assume the presence of
a rooted mirror identity—that is, one whose Root attribute
is always true. Rooted mirror identities can be used to rep-
resent one-of-a-kind units such as homes, dormitories, and
hospitals.

procedure set-rooted-mirror-identities-
of-all-agents is

for each A ∈ PopulationAgent do loop
for each I ∈ AgentA.SetMirrorIdentity

do loop
AgentA.MirrorIdentity I.
AttributeSuspend ← False
AgentA.MirrorIdentity I.
AttributeRoot ← False

n← random(1, AgentA.AttributeCount )
// n ∈ [1,AgentA.AttributeCount]
AgentA.MirrorIdentity Index(n).
AttributeRoot ← True
AgentA.AttributeMobility ← Free

return

If a health authority puts agentA under home quarantine
(i.e., the mobility attribute of agent A is changed to Quar-
antined), the Suspend attributes of all its mirror identities
are marked as true with the exception of its rooted mirror
identity. Accordingly, agent A cannot interact with other
adjacent neighbors or move among various locations with
the exception if it is home until the quarantine period ends.
The lattice points surrounding agent A’s rooted social mir-
ror identity are the mirror identities of the agent’s family
members and/or cohabitants. Once the home quarantine is
lifted, the Suspend attributes of all mirror identities except
for the rooted mirror identity return to false, indicating a
resumption of normal activities.

when event AgentA.AttributeMobility

= Quarantined do
for each I ∈ AgentA.SetMirrorIdentity

do loop
if AgentA.MirrorIdentity I.
AttributeRoot = False then
AgentA.MirrorIdentity I.
AttributeSuspend ← True

when event AgentA.AttributeMobility

= Free do
for each I ∈ AgentA.SetMirrorIdentity

do loop
AgentA.MirrorIdentity I.
AttributeSuspend ← False
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The advantage of our proposed model is that it does not
require fixed lattice points for representing hospitals. As-
sume that agent B, with a confirmed epidemiological state
of I , voluntarily enters isolation (i.e., its mobility attribute
changes to Isolated). Similar to the preceding example,
the Suspend attributes of all agent B mirror identities (ex-
cept for its rooted mirror identity) are changed to true. This
represents a scenario where agent B is receiving treatment
in hospital isolation. The lattice points surrounding agent
B’s rooted mirror identity represent medical staff, nurses,
health care workers, and perhaps one or more family mem-
bers who have special visitation privileges. If agent B re-
covers, the Suspend attributes of the affected mirror iden-
tities return to false, indicating a resumption of normal
activities. If the agent dies, the Suspend attributes of agent
B’s mirror identities (including its rooted mirror identity)
are permanently changed to true.

when event AgentA.AttributeMobility

= Isolated do
for each I ∈ AgentA.SetMirrorIdentity

do loop
if AgentA.MirrorIdentity I.
AttributeRoot = False then
AgentA.MirrorIdentity I.
AttributeSuspend ← True

when event AgentA.AttributeMobility

= Free ∧ AgentA.AttributeE = R do
for each I ∈ AgentA.SetMirrorIdentity

do loop
AgentA.MirrorIdentity I.
AttributeSuspend ← False

when event AgentA.AttributeMobility

= Free ∧ AgentA.AttributeE = Ddo
for each I ∈ AgentA.SetMirrorIdentity

do loop
AgentA.MirrorIdentity I.
AttributeSuspend ← True

Table 5 presents the results of an intersection between
epidemiological progress states and mobility states. The ta-
ble allows users to address various potential combinations
of situations that can occur during an epidemic outbreak.
Health authorities can use this information to test various
public health policies—for instance, decreasing or com-
pletely eliminating the number of infectious patients who
are allowed to leave their homes or hospitals (i.e., individ-
uals with a disease status of E or I and a social activity
status of Free, or with a disease status of S and a social
activity status of Quarantined or Isolated).

4.3 Modeling Public Health Policies

4.3.1 Mask-Wearing Policy: General Public
vs. Health Care Workers

The two parameters for a general public mask-wearing pol-
icy are participation rate (the percentage of individuals in

the total population who actually wear masks) and preven-
tion efficiency (the protection grade of the masks being
used). Our simulation system uses the participation rate
to select agents who abide by the policy. Agents with an
S-status who wear masks are much less likely to become
infected, depending on the prevention efficiency parameter.
The same is true for I -status agents who wear masks be-
fore and after their symptoms appear since the probability
of the disease being spread to its neighbors will decrease,
also depending on the prevention efficiency parameter.

The process for simulating a hospital employee mask-
wearing policy is essentially the same. Once the policy
is put into effect, agents who surround the rooted mirror
identities of agents in hospital isolation either wear or do
not wear masks based on the participation rate, and the
probability of infection is also affected by the prevention
efficiency parameter. Due to the high potential for infec-
tion, health care workers are usually required or strongly
encouraged to wear masks with high protection rates, mak-
ing their participation rates very high. Since they tend to
wear better quality masks, the prevention efficiency is also
high.

when a mask-wearing policy in general
public is enacted or changed do

if PolicyWearningMaskInGP.Parameter.
RateParticipation > 0 then
for each A ∈ PopulationAgent do loop
n← random(0, 1) // n ∈ [0,1]
if n ≤ PolicyWearingMaskInGP.Parameter.
RateParticipation then
AgentA.AttributeWearingMask ← True
AgentA.AttributeMaskType ←
PolicyWearingMaskInGP.Parameter.
RatePrevention

else
AgentA.AttributeWearingMask ← False

when a mask-wearing policy in health
worker is enacted or changed do

when event AgentA.AttributeMobility

= Isolated do
for each N ∈ AgentA.Mirror-
IdentityRoot.
SetNeighbor do loop
c← random(0, 1) // c ∈ [0,1]
if c ≤ PolicyWearningMaskInHW.Parameter.
RateParticipation then
AgentT race(N).AttributeWearingMask ←
True
AgentT race(N).AttributeMaskType ←
PolicyWearingMaskInHW.Parameter.
RatePrevention

else
AgentT race(N).AttributeWearingMask ←
False
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Table 5. Intersection between epidemiological progress and social mobility states

Epidemiological
Progress Mobility

State State Description

Susceptible Free Agent is healthy and free to move anywhere.
Susceptible Quarantined Agent is healthy but in quarantine since it may come into contact with an infectious

agent.
Susceptible Isolated Agent is healthy but is mistakenly diagnosed as infected and therefore isolated by

health care center.
Incubated Free Agent is infected and in an incubation period. It is free to move anywhere because it

has not been properly diagnosed.
Incubated Quarantined Agent is infected and in an incubation period. It has yet to be examined. There is a

possibility that one of its friends or family members has been diagnosed as infected;
therefore, the agent is quarantined according to contact tracing and home quarantine
policies.

Incubated Isolated Agent is infected and in an incubation period. After being examined, it is placed in
hospital isolation.

Infectious Free Agent is infected and has symptoms, but it has yet to be examined or affected by a
contact tracing policy. It can move anywhere and can easily infect other agents.

Infectious Quarantined Agent is infected and has symptoms, but it has yet to be examined.There is a possibility
that one of its friends or family members has been diagnosed as infected; therefore,
the agent is quarantined according to contact tracing and home quarantine policies.

Infectious Isolated Agent is infected and has symptoms. After being examined and diagnosed, it is placed
in hospital isolation.

Deceased None Agent is dead.
Recovered Free Agent is recovered and free to move anywhere.
Recovered Quarantined Agent is recovered but is kept in quarantine because it has been in close contact with

someone who has been diagnosed with the disease.
Recovered Isolated Agent is recovered but still in hospital isolation.

Immune Free Agent is immune and can move anywhere.

4.3.2 Taking Body Temperature

Under a temperature measurement policy, the social mirror
identities of individual agents decide individually whether
or not to measure their body temperatures before coming
into contact with their surrounding social mirror identities.
Their decisions are made based on a combination of a par-
ticipation rate parameter and a random number n.An n that
is lower than the participation rate means that neighboring
agents are following the practice of measuring the tem-
peratures of all agents that want to contact them. Success
thereby depends on the detection rate parameter—a com-
bination of participation rate and thermometer accuracy.
During the 2003 SARS epidemic, most countries accepted
the World Health Organization (WHO) recommendation
to enforce this policy, but execution was considered ex-
pensive in terms of manpower and social costs. It was rel-
atively easy for infected individuals to avoid having their
body temperatures taken.

4.3.3 Reducing Public Contact

Some researchers have recently studied reduced public
contact as a means of controlling the spread of disease [7,
10]. In our simulation, the infection process was affected
by a combination of contact and infection rate. Reducing
public contact decreased the contact frequency of a tar-
geted group of agents. The combination of participation

rate and a random number n determined whether the mir-
ror identities of two agents interacted. An n that exceeded
the participation rate indicated that an agent avoided con-
tact with the mirror identities of its neighboring agent.

4.3.4 A- and B-Class Home Quarantines

According to an A-class home quarantine policy, when-
ever an infected agent is identified, all agents surrounding
the infected agent’s mirror identities must decide whether
they accept home quarantine, based on the participation
rate parameter. If they do, their mobility attribute changes
from Free to Quarantined. As in the hospital isolation ex-
ample, all of the mirror identities of agents that decide to
enter home quarantine become inactive until the separa-
tion period is complete. This requirement does not apply
to rooted mirror identities. This policy requires consider-
able manpower and social costs to execute.

Although similar in most respects to the A-class policy,
a B-class policy affects a larger number of agents. For in-
stance, if one mirror identity of agent C is adjacent to a
particular mirror identity of agent D (i.e., if agents C and
D are a cohabiting couple), this represents one degree of
separation. If one mirror identity of agent D is adjacent to a
particular mirror identity of agent E (perhaps coworkers in
the same office), this represents two degrees of separation
between agents E and C. Under a B-class policy, both D
and E would be required to enter home quarantine.
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4.3.5 Hospital Access

During the 2002-2003 SARS epidemic, Singaporean and
Taiwanese health authorities imposed strict rules concern-
ing hospital visitations [10]. To simulate this “hospital ac-
cess control” policy, we assumed that agent A showed
symptoms and was admitted to a hospital for treatment
in isolation. If the rooted mirror identities of agents A and
B are adjacent, this indicates that agent B is on the hospital
staff, a nurse, a health care worker, or a very close rela-
tive. If agent C’s nonrooted mirror identities are adjacent
to agent A’s rooted mirror identity, it indicates that agent C
is a distant relative, friend, classmate, or coworker. Under
a strict visitation policy, agent B is allowed to come into
contact with agent A, but agent C is not.

4.4 Basic Reproductive Number R0 with Correspond-
ing Parameters in CASMIM

To present a reasonable and precise picture of the transmis-
sion dynamics of an epidemic, we adjusted certain param-
eters according to the most recently available information
on contact rate, transmission rate, number of contacts, and
average transmission period. In addition to predicting and
estimating overall disease trends, we also applied the ba-
sic case reproduction number R0 to estimate all values for
the parameters just described to increase the precision and
reliability of the simulation process and outcome.

According to Anderson and May [27] and Becker [28],
R0 can be expressed as equation (4), where c represents the
number of times an infectious person comes into contact
with an uninfected person, β is the probability of transmit-
ting the infection to each contact, and D is the length of
time a person remains infectious.

R0 = c × β×D. (4)

According to the characteristics of our proposed model,
equation (4) can be amended as equation (5). β and D
are the same in both equations, with β replacing the in-
fection rate RInf ection (System.Parameter.RateInf ection) and
D replacing the average infected period Pinf ectious (Sys-
tem.Parameter.PeriodInf ectious).

R0 = (avg. of social mirror identity× no. of neighbors

× RContact × TContact )× RInf ection × PInf ectious . (5)

As shown in equation (5), element c in equation (4)
can be broken down, with “avg. of social mirror identity”
representing the average number of agent mirror identi-
ties, “no. of neighbors” the number of neighbors for each
mirror identity (which under the Moore neighborhood
structure equals 8), RContact (Agent.Attribute.RateContact )
the contact rate of an agent’s mirror identity and the
mirror identities of its neighbors, and TContact (Sys-
tem.Parameter.FrequencyContact ) the average number of
contacts of an agent’s mirror identity with the mirror iden-
tities of any other neighbor during a time step.

Since the average numbers of mirror identities for an
agent and its neighbors are constants, they do not require
updating, even when other disease transmission parame-
ters change. Thus, only four parameters in equation (5) are
associated with epidemics: contact rate (RContact ), number
of contacts (TContact ), transmission rate (RInf ection), and av-
erage infected period (PInf ectious). All of these require ad-
justment according to the latest information released by
health authorities.

5. Simulating SARS with CASMIM

5.1 Comparing Simulation Results with Actual
Cases

After initializing our model and setting up system and epi-
demic disease parameters (Table 3) according to informa-
tion distributed by WHO and the U.S. Centers for Disease
Control and Prevention (CDC) [7, 10, 41-48], we simulated
the transmission dynamics of SARS in different areas and
compared the effectiveness of various public health poli-
cies and disease prevention strategies. We used the simula-
tion definitions and parameters identified in section 4 and
assumed that one time step = 1 day in the real world.

Since SARS originated in China’s Guangdong
province, we viewed the SARS viruses in all other coun-
tries as being imported and used the number of imported
cases announced by local health authorities to determine
transmission source information—for example, number of
infectious people entering a country, the time step during
which they entered, and whether they entered as incubated
or infected individuals (Tables 6-9). We incorporated pub-
lic health policies at certain time steps according to actual
announcements made by local health authorities and ad-
justed our simulation environment, epidemic, and public
health policy parameters according to data from the CDC
[42, 44, 45, 47] and Sebastian and Hoffmann [10].

5.1.1 Statistical Analyses for Epidemic Simulation

We used five statistical tests to examine the reliability and
validity of time-series data generated by the simulation
system (Table 10): a chi-square test for homogeneity of
proportions, a correlation coefficient (CC, equation (6)),
coefficient of efficiency (CE, equation (7)), mean square
error (MSE, equation (8)), and mean absolute error (MAE,
equation (9)). {Xt | t = 1 . . . n ∧ t ∈ ℵ} represents time-
series data for the number of individuals who were actually
infected each day. {Yt |t = 1 . . . n∧ t ∈ℵ} represents time-
series data for the numbers of infected individuals each
day generated by our simulation system. In both data sets,
t represents the time step (ranging from 1 to a maximum
value of n), Xt represents the number of actual infected
individuals at time step t , Yt represents the number of in-
fected individuals generated by the simulation system at
time step t , X represents the mean number of actual in-
fected individuals, and Y represents the mean number of
infected individuals in the simulation.
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Table 6. Input data for simulating SARS epidemic curves in Taiwan, Singapore, and Toronto

Data Default
Category Attribute Type Description Value

Imported Cases

Time Point Date Date when imported case occurred.
Amount Integer Number of patients.
Phase Symbol Imported during incubation or illness period. Infected

Super-spreader Boolean Determine whether the imported patient is a super-
spreader.

False

Public Health Policy Related
Attributes

See Table 4

Run Day Integer Number of execution days.

Table 7. Singapore simulation input data

Time Public Health Special Description
Step Action Persons State Policy on the Simulator

2003/3/1 Trigger 1 Infectious Super-spreader
2 Trigger 2 Infectious

11 Set Reduced public contact Efficacy = 0.9, Participation = 0.5
15 Trigger 1 Incubation Mask-wearing policy Efficacy = 0.9, Participation = 0.9

for health care workers
22 Trigger 2 Incubation

23 Set

Home quarantine 10 days, Participation = 0.9
Controlling hospital access Efficacy = 0.9, Participation = 0.9
Mask-wearing policy for Efficacy = 0.9, Participation = 0.5
general public

25 Trigger 2 Infectious
52 Set Taking body temperature Efficacy = 0.9, Participation = 0.5

Table 8. Taipei simulation input data

Time Public Health Special Description
Step Action Persons State Policy on the Simulator

2003/3/20 Trigger 1 Infectious
2 Trigger 4 Incubation
9 Trigger 1 Incubation

11 Trigger 2 Infectious
12 Trigger 2 Infectious Home quarantine 10 days, Participation = 0.9
14 Trigger 1 Infectious
27 Trigger 1 Infectious Mask-wearing policy for health Efficacy = 0.9, Participation = 0.9

care workers
47 Set Controlling hospital access Efficacy = 0.9, Participation = 0.9

53 Set
Home quarantine 14 days, Participation = 0.9
Mask-wearing policy for general Efficacy = 0.9, Participation = 0.5
public

74 Set Home quarantine 10 days, Participation = 0.9
88 Set Taking body temperature Efficacy = 0.9, Participation = 0.5

CC =
∑n

t=1

(
Xt −X

)× (
Yt − Y

)
√∑n

t=1

(
Xt −X

)2 ×∑n

t=1

(
Yt − Y

)2
∈ [−1, 1],

(6)

CE = 1−
[∑n

t=1 (Xt − Yt)
2∑n

t=1

(
Xt −X

)2

]
∈ [0, 1], (7)

MSE = 1

n

n∑
t=1

(Yt −Xt)
2 ∈ [0,∞], (8)

MAE = 1

n

n∑
t=1

|(Yt −Xt)| ∈ [0,∞]. (9)

With the exception of the chi-square test, none of the sta-
tistical tests requires a table lookup to evaluate simulation
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Table 9. Toronto simulation input data

Time Public Health Special Description
Step Action Persons State Policy on the Simulator

2003/2/23 Trigger 1 Infectious
6 Trigger 1 Infectious

19 Trigger 1 Infectious
Mask-wearing policy for health
care workers

Efficacy = 0.9, Participation = 0.9

Reduced public contact Efficacy = 0.9, Participation = 0.5
30 Trigger 1 Infectious

37 Set
Controlling hospital access Efficacy = 0.9, Participation = 0.9
Home quarantine 10 days, Participation = 0.9

38 Trigger 1 Infectious
68 Close All public health policies

previously opened
91 Set Mask-wearing policy for health Efficacy = 0.9, Participation = 0.9

care workers
112 Set All public health policies

previously closed

Table 10. Reliability and validity tests for epidemic simulation using CASMIM

Reliability Test Validity Test

Chi-Square Test for
Homogeneity of Proportions

Simulated Degree of
Area Freedom χ2χ2χ2 χ2

0.05, degree of freedomχ2
0.05, degree of freedomχ2
0.05, degree of freedom P CC CE MSE MAE

Singapore 70 55.54 90.53 0.896 0.6943 0.9926 6.31 1.75
Taipei 87 100.48 109.77 0.153 0.7698 0.9948 15.00 2.36

Toronto 111 107.39 136.59 0.500 0.4201 0.9923 4.96 1.69

Note: CC = correlation coefficient; CE = coefficient of efficiency; MSE = mean square error; MAE = mean absolute error.

reliability or validity; in other words, the statistical esti-
mates can be directly applied for evaluation. The closer
the CC approaches 1, the higher the positive correlation
between the actual and simulation data; the closer to –1,
the more likely a negative correlation will result; and the
closer to 0, the lower the chances of any correlation be-
tween the two. The estimated value of the CE is a real
number between 0 and 1. The closer it approaches 1, the
higher the accuracy of the simulation. Both MSE and MAE
use real numbers between 0 and infinity to represent de-
gree of inaccuracy. The closer it approaches 0, the more
accurate the simulation.

We adopted a chi-square test for homogeneity of pro-
portions and a correlation coefficient (CC) to examine the
actual number of daily SARS-infected individuals in each
city and the numbers that were generated by the simulation
system in order to determine whether the distribution pro-
portions for the two sets of time-series data were consistent
and reflected a positive correlation.According to the results
shown in Table 10, the chi-square test values χ2 for each
city were smaller than χ2

(0.05, degree of freedom)
. We therefore ac-

cepted the null hypothesis that the distribution proportions
for the time-series data for the number of actual and sim-

ulated affected individuals in each city were consistent at
a α = 0.05 level of significance. After examining the simu-
lation time-series data for the three cities, we found three
positive correlations with the actual time-series data.

In terms of simulation validity, if we only examined
simulation accuracy according to the MSE and MAE, the
respective accuracy data for Toronto (4.96 and 1.69) were
higher than for Singapore (6.31 and 1.75) and Taipei (15.00
and 2.36). However, when the CE was applied, the results
were the opposite: the value for Taipei (0.9948) was higher
than for Singapore (0.9926) or Toronto (0.9923). The rea-
son for this is that the efficiency coefficient primarily con-
siders variables, while MSE and MAE focus on average
total error values.

5.1.2 Singapore SARS Outbreak

A comparison of actual and simulated SARS cases in Sin-
gapore (Fig. 16) shows that our simulated curve had a
very close fit with data published by the city-state’s health
authority for the two outbreaks that occurred between
February 25 and May 5, 2003 (Table 7) [7, 10, 42, 46,
48]. Emergency public health policies were not activated
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Figure 16. A comparison of actual and simulated epidemic results for the SARS outbreak in Singapore. Blue bars represent actual
reported cases; red line represents an average of results from 20 simulation runs.

following the first outbreak, which was attributed to im-
ported cases. The second outbreak was attributed to the
compound effects of secondary infections. Several emer-
gency policies were put into effect on March 24, including
a ban on visits to patients in hospitals or under home quar-
antine. The number of new cases dropped dramatically at
the beginning of June; soon afterwards, WHO announced
that the disease was under control.

5.1.3 Taipei SARS Outbreak

Our Taipei simulation included several public health poli-
cies enforced by that city’s government, including several
grades of home quarantine and a mask-wearing require-
ment for all bus and train passengers (Table 8) [7, 10, 44,
46-48]. As shown in Figure 17, our simulated results had
a close fit with the probable cases curve published by the
Taiwanese health authority on September 28, 2003—a ma-
jor spike followed by several smaller outbreaks. The higher
concentration in the Taipei curve compared to Singapore’s
is likely due to late case discoveries, delays in seeking treat-
ment, illness cover-ups, public interactions, and the large
number of cases imported by travelers returning from Hong
Kong. In Singapore, all imported cases were reported prior
to the first outbreak, and the second wave resulted from
compound infections. The S-curve for the Taiwan situa-
tion is more representative of a typical infection pattern.

5.1.4 Toronto SARS Outbreak

The SARS scenario in Toronto consisted of two major
waves with almost no new cases in between (Fig. 18) [7, 10,

43, 45-46, 48]. However, after a reexamination of the data
in August 2003, the Canadian authorities acknowledged
several additional cases during the lull period. According
to our simulation, the second wave would not have been as
severe if strict public health policies had been enforced for
a longer period following the first wave. In our simulation
(Table 9), we relaxed epidemic control measures (espe-
cially restricted hospital access and reduced public contact
with infected persons) after the first wave subsided. As a
result, a second spike occurred in our simulation within a
few days of the actual spike reported by the Toronto health
authorities. Our results support Sebastian and Hoffmann’s
[10] conclusion that the Toronto government lifted its con-
trol measures too quickly. Because of increased contact
between patients and visitors and relaxed rules on wearing
masks and/or respirators by health care workers, Toronto
experienced a second nosocomial transmission period.

5.1.5 Home Quarantines

After releasing data on the global SARS outbreak on
March 12, 2003, WHO officials recommended that home
quarantine periods be at least twice as long as the then-
average 4- to 6-day incubation period [7, 10, 42, 47]. The
governments of Singapore, Taiwan, and Canada accepted
this recommendation and enforced 10-day quarantine poli-
cies for the duration of the epidemic; for a short period, the
Taiwanese government enforced a 14-day policy. We used
the home quarantine policy to test our model and observed
that a minimum 10-day quarantine period was required to
suppress the number of new cases—the same time period
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Figure 17. A comparison of actual and simulated epidemic results for the SARS outbreak in Taipei

Figure 18. A comparison of actual and simulated epidemic results for the SARS outbreak in Toronto. We assumed that the second
outbreak occurred because preventive policies were relaxed too soon following the first outbreak.
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recommended by WHO (Fig. 19). Our simulation showed
that the disease became endemic when the 10-day quaran-
tine policy was enforced.

5.2 Analyzing Public Health Policies

5.2.1 Taking Body Temperature

The Singaporean and Taiwanese governments both imple-
mented temperature measurement policies during the epi-
demic, going so far as to launch national campaigns that
included installing temperature-monitoring equipment and
setting up manual temperature measurement stations at var-
ious government buildings, clinics, and public transporta-
tion facilities [7, 10]. According to our simulation results,
when such policies were both comprehensive and com-
pulsory, they reduced the number of feverish individuals
entering public places. However, in the real world, this pol-
icy is difficult to set up and enforce since implementation
methods tend to vary, oversights are common, and an un-
known number of individuals manage to evade having their
temperatures taken.

Our simulation results suggest that a participation rate
of between 80% and 90% is required for this public health
policy to have a positive effect in controlling a SARS epi-
demic (Fig. 20). At a rate of 65% or lower, it had little
effect. This policy incurs significant social costs—for in-
stance, distributing inexpensive thermometers, setting up
temperature screening stations, and employing workers to
take manual temperature measurements at various public
facilities and medical clinics.

5.2.2 Wearing Masks with Different Protection
Levels—General Public vs. Health Care Workers

The efforts of the governments of Taiwan and Hong Kong
to promote general mask-wearing policies led to hoarding
and panic buying [7, 10]. Masks are categorized according
to grade—ordinary, surgical, N95 respirator masks, and so
on. In Taiwan, a serious shortage of professional masks
for medical staff occurred following a mad rush by the
general population to purchase masks regardless of grade;
this triggered a debate on the necessity of wearing N95
respirator masks outside of hospitals and clinics.

According to the results of a simulation that we ran to
analyze this policy, ordinary and surgical masks assisted in
controlling the epidemic outbreak as long as wearing them
was a strong habit for the desired time period (Fig. 21). At
a prevention efficiency of 65% or more (i.e., the mask cov-
ered the mouth and nose), the epidemic could be controlled
but not eliminated. When wearing ordinary masks, medi-
cal staff members still had relatively high infection rates
(Figs. 21 and 22); these personnel clearly benefited from
wearing N95 and other high-resistance masks in hospitals
and other medical centers. From our simulation, we sug-
gest that the general public should not be required to wear
high-resistance masks and that higher grade masks should
be reserved for medical staff and health care workers.

5.3 Assessing Public Health Suites

Different public health policies entail different social costs.
Home quarantining is very effective but requires consider-
able amounts of labor and material resources compared to
temperature measurement and mask-wearing policies. We
ran simulations of various prevention strategies to identify
an optimal combination of public health policies in terms of
efficacy and cost. According to our results, a combination
of mask wearing by the general public and reduced contact
in public places was the best combination for suppressing
the spread of SARS (Fig. 23). Some costs are involved in
purchasing masks, but few costs are associated with lim-
ited public contact. In addition, mask wearing addresses
an epidemic at its source—disease transmission.

The combination of temperature measurement, re-
stricted hospital visitations, and mask wearing by health
care workers should be considered a remedial reaction to
a SARS outbreak since it is ineffective in terms of pre-
venting patients in the incubation stage or patients suffer-
ing from minor symptoms from spreading the disease to
others. In addition, this suite requires substantial amounts
of labor and material resources. Furthermore, the combi-
nation of home quarantine and reduced contact in public
places also has high social costs, with results dependent
on how well isolation guidelines are followed. Numerous
instances of intrafamily infections were reported during
the actual 2002-2003 SARS outbreak—evidence that cer-
tain prevention strategies were ineffective in controlling
the epidemic.

6. Conclusion

In this article, we proposed a novel small-world model
consisting of cellular automata with social mirror identities
representing daily-contact social networks for running epi-
demiological simulations. We established the social mirror
identity concept to integrate long-distance movement and
geographic mobility into the model, which can be used
to simulate the transmission dynamics of infectious dis-
eases among social networks and to investigate the effica-
cies of various public health policies and epidemic preven-
tion strategies—alone and in combination. The model suc-
cessfully exhibits epidemiological behaviors in the form
of daily interactions among heterogeneous individuals and
expresses such present-day small-world properties as high
degrees of clustering, low degrees of separation, and long-
distance movement.

According to the results of simulations that we ran based
on data collected during the 2002-2003 SARS outbreaks in
Singapore, Taipei, and Toronto, we suggest that this model
can be applied to different infection scenarios and used to
simulate the development of epidemics with considerable
accuracy. A comparison of simulation and real-world data
indicates that our model can be used to test epidemic report
systems and to identify the best public health policy suites
for specific scenarios. The simulation results also indicate
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Figure 19. Results from a simulation based on various home quarantine policies. Simulation period was 250 days, with a 5-day
default incubation period. According to the results, (a) different home quarantine restriction levels exerted different impacts on the
SARS epidemic, and (b) a home quarantine policy by itself was insufficient for suppressing the epidemic.

Figure 20. Results from a simulation focused on temperature measurement policy at different participation levels. We used the
eight imported cases reported in Singapore to trigger the simulation. In each 66-day simulation run, the policy was activated on
day 24.
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Figure 21. Results from a simulation focused on the impact of mask wearing by the general public, comparing different mask
protection levels

Figure 22. Results from a simulation focused on the impact of mask wearing by health care workers in health care facilities,
comparing different mask protection levels
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Figure 23. A comparison of various public health policy suites. We used the eight imported cases reported in Singapore to trigger
the simulation. Policy suites went into effect on day 24 of our 66-day simulations. Suite 1 (cyan): A-class home quarantine for 10
days and reduced public contact; suite 2 (red): wide-scale taking of body temperatures and a restriction on hospital visitations; suite
3 (green): wide-scale taking of body temperatures, a restriction on hospital visitations, and mask wearing by health care workers;
suite 4 (pink): public mask wearing and reduced public contact.

considerable flexibility in the model—that is, we believe
it can be applied to a wide range of contagious diseases
(e.g., influenza, enteroviruses, and HIV/AIDS) that have
well-defined epidemic parameters.
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